A Possible Approach to Inclusion of Space and Time in Frame Fields of Quantum Representations of Real and Complex Numbers
نویسنده
چکیده
This work is based on the field of reference frames based on quantum representations of real and complex numbers described in other work. Here frame domains are expanded to include space and time lattices. Strings of qukits are described as hybrid systems as they are both mathematical and physical systems. As mathematical systems they represent numbers. As physical systems in each frame the strings have a discrete Schrodinger dynamics on the lattices. The frame field has an iterative structure such that the contents of a stage j frame have images in a stage j-1 (parent) frame. A discussion of parent frame images includes the proposal that points of stage j frame lattices have images as hybrid systems in parent frames. The resulting association of energy with images of lattice point locations, as hybrid systems states, is discussed. Representations and images of other physical systems in the different frames are also de-
منابع مشابه
دینامیک کوانتومی ذره جرمدار روی دوسیتر 3+1
The phase space which is related to the motion of massive particle on 1+3- De sitter space is a 3-dimensional complex sphere. Our main aim in this study is discribing this movement in the frame quantum mechanics. Transfering from classical mechanic to quantum mechanics is possible by means of coherent states. Thus, after determination of this state, we quantize some of the classical observables.
متن کاملProperties of Frame Fields based on Quantum Theory Representations of Real and Complex Numbers
Here quantum theory representations of real (R) and complex (C) numbers are described as equivalence classes of Cauchy sequences of states of single, finite strings of qukits where the qukit string states represent rational numbers. This work extends earlier work with qubit string states to qukit string states for any base k ≥ 2. Quantum theory representations differ from the usual classical re...
متن کاملReference Frame Fields based on Quantum Theory Representations of Real and Complex Numbers
A quantum theory representations of real (R) and complex (C) numbers is given that is based on states of single, finite strings of qukits for any base k ≥ 2. Arithmetic and transformation properties of these states are given, both for basis states representing rational numbers and linear superpositions of these states. Both unary representations and the possibility that qukits with k a prime nu...
متن کاملTime-Dependent Real-Space Renormalization Group Method
In this paper, using the tight-binding model, we extend the real-space renormalization group method to time-dependent Hamiltonians. We drive the time-dependent recursion relations for the renormalized tight-binding Hamiltonian by decimating selective sites of lattice iteratively. The formalism is then used for the calculation of the local density of electronic states for a one dimensional quant...
متن کاملFields of Quantum Reference Frames based on Different Representations of Rational Numbers as States of Qubit Strings
In this paper fields of quantum reference frames based on gauge transformations of rational string states are described in a way that, hopefully, makes them more understandable than their description in an earlier paper. The approach taken here is based on three main points: (1) There are a large number of different quantum theory representations of natural numbers, integers, and rational numbe...
متن کامل